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Abstract-The Human Genome Project requires better software for the creation of physical maps of 
chromosomes. Current mapping techniques involve breaking large segments of DNA into smaller, 
more-manageable pieces, gathering information on all the small pieces, and then constructing a map of 
the original large piece from the information about the small pieces. Unfortunately, in the process of 
breaking up the DNA some information is lost and noise of various types is introduced; in particular, 
the order of the pieces is not preserved. Thus, the map maker must solve a combinatorial problem in order 
to reconstruct the map. Good software is indispensable for quick, accurate reconstruction. 

The reconstruction is complicated by various experimental errors. A major source of difficulty-which 
sems to be inherent to the recombination technology-is the presence of chimeric DNA clones. It is fairly 
common for two disjoint DNA pieces to form a chimera, i.e. a fusion of two pieces which appears as a 
single piece. Attempts to order chimera will fail unless they are algorithmically divided into their 
constituent pieces. Despite consensus within the genomic mapping community of the critical importance 
of correcting cbimerism, algorithms for solving the chimeric clone problem have received only passing 
attention in the literature. Based on a model proposed by Lander (1992a, b) this paper presents the first 
algorithms for analyzing chimerism. 

We construct physical maps in the presence of chimerism by creating optimization functions which have 
minimizations which correlate with map quality. Despite the fact that these optimization functions are 
invariably NP-complete our algorithms are guaranteed to produce solutions which are close to the 
optimum. The practical import of using these algorithms depends on the strength of the correlation of 
the function to the map quality as well as on the accuracy of the approximations. We employ two 
fundamentally different optimization functions as a means of avoiding biases likely to decorrelate the 
solutions from the desired map. 

Experiments on simulated data show that both our algorithm which minimizes the number of chimeric 
fragments in a solution and our algorithm which minimizes the maximum number of fragments per clone 
in a solution do, in fact, correlate to high quality solutions. Furthermore, tests on simulated data using 
parameters set to mimic real experiments show that the algorithms have the potential to find high quality 
solutions with real data. We plan to test our software against real data from the Whitehead Institute and 
from Los Alamos Genomic Research Center in the near future. 

1. INTRODUCTION 

Computational support is vital for the creation of 
robust genornic maps. There is a nearly seven orders 
of magnitude gap between the size of biological 
molecules in real organisms and the size of molecules 
which can be examined in detail. In order to bridge 
this gap physical maps are constructed which hier- 
archically divide the genome into fragments of 
successively smalIer sizes. The construction of the 
physical maps requires algorithms to order the 
fragments at each stage of the hierarchy. 

More specifically, for our purposes a piece of DNA 

can be considered to be a string over the four 

*Some topics included in this work have been discussed 
during the Third International Workshop on Open Prob- 
lems of Computational Molecular Biology, Telluride, 
Cola., 11-25 July 1993. 

character alphabet {A, C, G, T}. The human genome 
(i.e. one copy of the DNA in a human cell) is approx. 
3 x lo9 base pairs long. In the laboratory it is poss- 
ible to read reliably the sequence of characters from 
segments containing at most 500 base pairs. 
Obviously the only viable approach is to break the 
long segments of DNA into smaller sections and 
analyze the smaller sections individually. In practice 
this is done in several stages. At each stage the DNA 
is broken into a number of pieces called clones. 
Through various biological techniques information is 
gathered about which clones overlap. A physical map 
is the reconstruction of the order in which the clones 
appeared in the original segment. The requirement 
that the reconstructed solution map must match an 
unknown template, i.e. the true map, makes the 
problem difficult to cast in computational terms. 
Since the quality of a map is defined only in terms of 
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its closeness to an unknown true map there is no 
immediate means of comparing potential solution 
maps. Fortunately, although the true map is not 
known, some of its properties are. Intuitively, the 
maps which are close to the true map possess more 
“structure” than random arrangements. Therefore, 
one tries to discover natural parameters of the maps 
that are correlated with the structure of true maps. 
Once such parameters have been found the problem 
of finding the true map can be modeled by the 
combinatorial problem of finding solutions which 
minimize the deviation of the parameter from the 
expected value of the true map. 

Schmitt and Waterman have summarized the 
difficulties of this type of approach and propose a 
potential improvement. 

A molecular biologist wishes to find the correct map, the 
map consistent with the unknown DNA sequence. There- 
fore a map that is “close” to optimal as measured by 
some arbitrary objective function might be very far from 
acceptable to a biologist. Mapping algorithms should pro- 
duce. the smallest possible set of maps that reliably include 
the biologically correct map (Schmidtt and Waterman, 
1991). 

Their important observation is that even if the opti- 
mum of some optimization function could be found 
it is unlikely to be the true solution. Instead one 
should look for a set of good solutions according to 
the optimization function with the hope that one such 
solution is the true solution and that all such sol- 
utions will share many features with the true solution. 
Even once an optimization function has been chosen 
several difficulties remain. In practice it is invariably 
the case that any objective function which correlates 
with good maps, on arbitrary hybridization matrices, 
provides us with an NP-complete optimization prab- 
lem (Gamy & Johnson, 1979). This means that 
finding an efficient algorithm which always finds the 
optimal solution is unlikely to be possible. Instead 
we must settle for an algorithm which always 
finds solutions which are close to optimal and/or one 
which finds the optimal solution most of the time. 
Given that our algorithm will at best give us a set of 
solutions which are close to optimal for our optimiz- 
ation function one might ask what, if anything, we 
have learned about the true map. A priori the answer 
is “not much”. We need one more property for our 
solutions--maps which are dose to optimal under the 
optimization fiction must share many features with 
the true map. 

All of the preceding is true of the physical mapping 
problem in general. As a first step we apply it to the 
specific question of physical mapping via STSs or 
single-copy landmarks when there are chimeric clones 
(see Section 2 for definitions). In Section 3 we show 
how to convert the chime& clone problem into an 
optimization function and in Section 4 and 5 define 
a set of optimization functions based on the chimeric 
puttern of a proposed map. Two simple members of 
this class of functions are x, the maximum number of 

chime& fragments in a single clone, and u, the total 
number of chime& fragments in all clones. Since 
chimerism is a result of experimental error (the 
perfect experiment would yield no chimeric clones) it 
is reasonable to assume that the map corresponding 
to the actual order of the experimental fragments 
along the DNA being mapped has a low amount of 
chimerism. Thus minimizing functions such as x and 
u (which are monotonic in the amount of chimerism) 
should yield solutions which ate similar to the true 
map. 

In Sections 6 and 7 we present efficient algorithms 
for 1 and c which are guaranteed to produce close 
to optimal solutions despite the fact that both optim- 
ization problems are NP-complete. In Section 8 and 
9 we describe experiments which demonstrate that 
minimizing either x or e does indeed result in good 
maps. On simulated data designed to mimic current 
experiments the algorithms correctly reconstructed 
the true map over 80% of the time and was incorrect 
by only a small number of transpositions in the 
remaining cases. 

2. THE BIOLOGY BEHIND PHYSICAL MAPPING 

Several groups have detailed a program for the 
creation of physical maps from single-copy land- 
marks (Lander & Waterman, 1988; Barillot et al., 
1991). Details of the biological techniques involved as 
well as reports on subsequent uses of the procedure 
can be found in (Brown, 1990; Cohen et al., 1993; 
Craig et nl., 1990; Green et nl., 1991; Nelson & 
Brownstein, 1993; Olson et al., 1989; Torney, 1991). 
We give here only the brief overview necessary for the 
definition of terms. 

The necessity of creating physical maps is a result 
of the large gap between the size of a piece of DNA 
which can be transcribed (about 500 bases) and the 
size of a chromosome (order 10’ bases). The general 
technique for bridging this gap is to break copies 
of a chromosome up into many pieces called clones. 
Tbe production of the clones does not preserve 
information about their relative position on the 
chromosome. Instead, various techniques are used to 
identify which clones overlap. 

We will primarily be concerned with the use 
of single-copy landmarks and in particular STSs. 
An SCL represents a unique point somewhere in the 
genome. By applying the SCL as a probe to a clone 
it can be determined if the clone covers the point. 
Two clones which hybridize to the same probe are 
then known to overlap. An STS is a particular type 
of SCL which has the advantage of being defined by 
its sequence and not just by a biological sample. 

A map is created by finding an ordering of the 
probes and their incident clones which conforms to 
the overlap information provided by the probes. 
Although the order of the clones is the ultimate goal 
of the physical mapping process we will define a map 
by the order of the probes since such an order is not 
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complicated by chimerism. An ordering of non- 
chimeric clones is then easily constructed from the 
order of the probes. 

2. I. Experimenrai errors-chimer&n 

Ideally we would start with a target piece of DNA, 
break it up into clones, construct a set of probes, and 
determine exactly which probes stuck to each clone. 
We would also expect that the clones cover the entire 
original piece, that each probe has a unique occur- 
rence in the target DNA peice, and that each overlap 
of clones is witnessed by at least one probe. Unfortu- 
nately molecular biology, like all experimental 
sciences, does not produce perfect data. The determi- 
nation of which probes stick to which clones will yield 
both false positives and false negatives. Some sections 
of the target DNA will tend to shatter into tiny pieces 
which are lost while other sections will contain no 
probe sequences. Thus we can only hope to come 
close to reconstructing a complete, unambiguous 
map. 

One important type of experimental error, 
chimerism, results from the cloning process itself. 
Clones, as the name suggests, are created by inserting 
fragments of DNA into vectors which are then 
replicated as clones. The process of inserting the 
fragments into vectors sometimes results in two or 
more fragments being contained in one clone. These 
clones are referred to as chimera since they contain 
unrelated pieces. 

Multiple-insert chimera complicate the physical 
mapping process since a chimeric clone cannot be 
mapped to a single contiguous section on the genome. 
Deletions can also produce clones which do not 
contain a single contiguous section of DNA. Some- 
times the vector will remove sections of the insert 
fragment during replication. Unlike the multiple- 
insert chimera the resulting clone does not contain 
completely unrelated pieces but the discontinunity of 
the pieces creates similar problems for the mapping 
process. 

In this paper we will treat any clone containing two 
or more non-contiguous pieces of DNA as a chimeric 
clone. 

Despite the many methods developed for 
chimerism detection the percentage of chimerism in 
genomic libraries continues to be high. When the 
Yeast Artificial Chromosome, YAC, technology was 
developed in 1987, the inventors predicted that the 
technology would suffer from some chimerism, with 
an estimate of about 10% chimerism in the clones of 
a YAC library. In the clone libraries that were used 
in the creation of the first high-resolution maps 
(Vollrath et al., 1992; Chumakov et al., 1992; Foote 
et al., 1992) the chimerism was discovered, however, 
to occur at much higher percentages-reaching 40% 
in the chromosome 21 map and about 59% in the Y 
chromosome map. Also, the frequency of chimerism 
has been estimated at 4&60% for the two most 
widely used human YAC libraries (Green et al., 1991; 

Nelson & Brownstein, 1993). The recent advance 
from YACs to megaYACs seems to confirm the 
expectation that using larger YACs means more 
chimerism is introduced in the library. 

Although WC will concentrate on resolving the 
problems due to chimeric clones there are several 
other types of errors common in physical mapping. 
We expect that the techniques described here will 
also be applicable to resolving other errors such as 
false positive and negative hybridizations and non- 
uniqueness of probes. 

3. CONVERTING TO A COMBINATORIAL 
PROBLEM 

We have seen that in the process of making a 
physical map that the biologist starts with a target 
piece of DNA (call it 9) and then creates clones of 
fragments of 3. Experiments are then done to deter- 
mine which probes stick to which clones. The result 
is the hybridization data for 9. Note that the clones 
and probes are typically chosen so that each probe 
hybridizes to a small number of clones. The fact that 
only a very small percentage of possible clone-probe 
hybridizations are positive is critical to the under- 
standing of physical mapping. In this section we give 
terminology and definitions necessary to convert the 
chimeric mapping problem into a combinatorial 
problem. We start by defining a hybridization matrix 
which encodes all the information about the biologi- 
cal experiments to be used by our algorithms. The 
sparseness parameter allows us to concentrate only 
on the biologically relevant matrices-those in which 
probes hybridize to only a few clones. 

Definition 1. We denote the set of clones as C = 
{C,, ., C,,), the set of probes as P = {P,,. . ., P,,). 

The c2onelprobe hybridizarion matrix is an m x n, 
&I matrix, A, such Afi, j] = 1 exactly when probe Pi 
hybridizes to clone Ci. 

Let s, be the number of entries of column j equal to 
1. Dejine the spareness of A s(A) = max{s, 1 I ,( j < nj. 

Since we are concentrating on the question of 
chimerism the entries of A are defined to be 0 or 1; 
that is, we are assuming that the hybridization exper- 
iments are unambiguous and fault-free. Furthermore, 
the use of STS probes corresponds to the assumption 
that the probes in Peach occur exactly once along 9, 
but not necessarily in the order 1 through n. The 
construction of a physical map thus corresponds to 
retrieving the correct order of the probes. 

Definition 2. Let PO(A) be the set of all poss- 
ible probe orders, i.e. the set of permutations of 
{I, 2,. . ., nJ 

For any IL E PO(A) the map induced by x (denoted 
A “) is the matrix obtained by permuting the columns 
of A according to x. 

A map, with its explicit ordering of the probes, 
results in an implicit arrangement of the clones. In 
the permuted matrix, A” the l’s in each row of the 
matrix then tell where the map assigns the putative 
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fragments of that clone. In order to quantify how 
much clone splitting was required for a proposed map 
we make the following definitions. 

Let a = (r,, rz,. . ., rfi) be a vector with O-1 entries. 
The sub-vector r,, r,+, , . . ., r,+,, r,+,+, is called 
a block of consecutive ones iff F,_, = 0, 
r, = . . = * ,+,= 1, and r,+,+, =0 (let ro=rn+,=O). 
For example, the vector a, = (1, 1, l,O, I, 0, 0, 0, 1, 1) 
has three blocks of consecutive ones while the vector 
til=(O,O,O, 1,1,1,1,0,0,0) has one block of con- 
secutive ones. If CI, and a2 were <he rows of a map 
A” corresponding to clones C, and C, then in this 
map C, is a chimeric clone while C2 is non-chime& 
(That is clone C, appears as three fragments which 
hybridized three, one, and two probes respectively 
and C, appears as a single fragment which hybridized 
four probes.) In a map matrix a row corresponding 
to a non-chimeric clone will have exactly one block 
of consecutive ones, while a row corresponding to a 
chimeric clone will have at least two blocks of 
consecutive ones. 

Definition 3. For a map A” de$ne its chimeric 
pattern as the vector c(A “) = (orI, u2, . . . , uJ, where u, 
is the number of blocks of consecutive ones occurring 
in row i, 1 ,Ci Cm. A map, A”, has the consecutive ones 
property (CIP for short) IY it has chimeric 
pattern = {l, 1, . , if. In this case, IL is called a 
CIP-probe order for A and the matrix A” is said to be 
in the CIP form. 

4. LIMITATIONS OF THE COMBINATORIAL 
APPROACH 

We can now state the physical mapping problem 
as combinatoric one-given a probe-clone incidence 
matrix A find the probe ordering n0 corresponding 
to the ordering on 9. Unfortunately this problem 
is clearly under-defined. Without knowing any- 
thing about 5% and A any probe ordering could be 
the correct order; each ordering corresponds to a 
chimeric pattern which conforms to the probe-clone 
incidences. 

4.1. Using a priori knowledge: ClP 

Suppose, however, that we knew that A corre- 
sponded to a chimera-free experiment. That is, sup- 
pose that we knew that each clone in C corresponded 
to a single fragment of 9. Then we would know 
that A’@ must have the CIP form. Now we can 
look for those probe orders which correspond to CIP 
matrices. The order rr, is guaranteed to be among 
these. If we can find these orders and if there are not 
too many of them we have solved the physical map 
problem in the non-chimeric case. 

Booth & Lueker (1976) developed an algorithm 
which creates a compact representation of all permu- 
tations of the columns which result in a ClP matrix. 
There can be exponentially many such permutations 
so a compact representation is crucial. Their rep- 
resentation has an additional feature important for 
physical maps: it highlights portions of the permu- 

tation which are critical for the matrix to be ClP. For 
example, if probes 20, 55, 1, 5 and 112 always occur 
consecutively in all ClP orders then it is simple to 
retrieve this fact from the representation. Since the 
true order, nO, is ClP, any property which is true of 
all ClP orderings is true of x0. Thus even when the 
ClP algorithm fails to find a small set of orderings it 
can still provide Powerful information about the true 
ordering. 

Booth and Lueker’s algorithm does not solve the 
physical mapping problem for two reasons. The first 
is that, as we have seen, real incidence matrices 
will contain chimeric clones and therefore will not 
be ClP. The second reason is that the incidence 
matrix often does not contain enough information to 
uniquely determine the true probe ordering. 

4.2. Lack of information in the matrix 

Even with the strong information that the matrix 
is CIP it is almost never the case that x0 is the onIy 
CIP arrangement of the matrix. The problem is that 
the matrix A may not contain enough information to 
uniquely determine x0. Suppose that two probes are 
recorded in A as hybridizing to exactly the same set 
of clones. Consequently, their particular order within 
any ClP probe order is not determined by the 
information reported by A. Although no specifies 
precisely the order of these two probes, this infor- 
mation is not enforced by A. It is beyond the 
possibilities of any mapping algorithm to retrieve this 
information. As, in general, the information content 
of the hybridization matrix is less than the infor- 
mation content of the true map, the well-defined goal 
of the mapping should be to compute a probe order 
n that is equivalent to x0 when restricted to the 
information contained by A. In the ClP case Booth 
and Lueker’s algorithm does exactly this. 

When A does not contain enough information 
to uniquely determine x0 there is some potential 
recourse. The experiment used to create A can be 
augmented by including more clones. The fact that 
more clones create more coverage and therefore better 
maps is well known. In the non-chimeric case the 
reason for desiring more coverage is simply to ensure 
that A has enough information to narrow the possible 
orderings down to one or at most a few possibilities. 
The map maker can decide when more time should 
be spent making a larger A and when the time can be 
better used to Perform specific experiments designed 
to disambiguate among the orderings consistent with 
A. Since additional types of errors besides chimerism 
are likely to limit the information content of A the 
latter approach may often be more effective. 

4.3. Approximating a map 
In order to create maps from data containing 

chimeric clones it would be nice to have some sort of 
apriori knowledge similar to knowing that the matrix 
is CIP in the non-chime& case. 

Before suggesting such properties let’s look at what 
made ClP a good property in the non-chimeric case. 
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Ideally only the matrix permutation corresponding to 
the true order would have the CIP form. Even in 
the non-chimeric case this was not always possible 
because the matrix A does not always contain 
full information. Instead the restriction to ClP 
matrices yielded a set a maps which contained the 
true order and in some sense had small size. In 
the case of ClP a small set of maps did not mean 
a small cardinality-the number of ClP arrange- 
ments of a matrix can bc exponential in the size of 
the matrix. Instead small meant that all the maps 
in the set were close together in the sense that 
they shared information about the true order. Using 
Booth and Lueker’s algorithm it is in fact possible to 
retrieve all the information about the true order 
contained in A. Furthermore the algorithm runs very 
quickly. 

We can summarize the advantages of knowing 
that the true matrix is ClP by the following three 

1. There exists a set of probe orderings, Maps(A), (in 
this case the CIP orderings) such that each ordering 
in Maps(A) contains all the ordering information 
available from A. 

2. A fast algorithm exists that will produce a probe 
ordering n from Mup+f ). 

3. The true probe ordering a, is Maps(A). 

Since the chimeric case is more complicated than 
the non-chimeric case we will have to relax 
these conditions. We will choose properties which are 
representative of typical, experimental, incidence 
matrices. However, it is possible that a given 
experiment yields an incidence matrix which is quite 
atypical. Thus rather than demanding that the 
true probe ordering is in Maps(A) we must 
instead ask that a good approximation of the true 
ordering is in Maps(A). Similarly it is unlikely 
that we can retrieve all the information in A. Instead 
we ask that each member of Maps(A) represent a 
large fraction of the information in A. Lastly, it will 
turn out that our properties will correspond to NP- 
complete optimization functions. Thus if Maps(A) is 
defined as the orders which have optimal value for the 
optimization function it will not be possible to find 
efficient algorithms. Instead we look for algorithms 
which find solutions which are close to optimal and 
are efficient. 

The three basic properties of Maps(A) become: 

1. There exists a set of probe orderings, Mops(A), 
such that every ordering in Maps(A) contains a 
large fracrion of the ordering information available 
from A. 

2. A fast opproximafion algorithm exists that will 
produce a probe ordering n from Maps(A). 

3. Good approximations of the true probe ordering z0 
are in Maps(A). 

Although the notions of approximation and large 
fraction are not well defined the intent should be 
clear. We wish to come as close as possible to the C 1 P 

t See Section 3 for definition. 

case. An assessment of whether we come close enough 
will in the end depend on how well the algorithms 
work on real data. Since we have not yet been able 
to run our algorithms on real data we substitute 
some intuitive rationales and the results of runs on 
simulated data. 

5. CHIMERIC OPTIMIZATION FUNCTIONS 

The presence of chimeric clones excludes assuming 
that A% is ClP. However, the chimerism introduced 
by experiment is not arbitrary. We know that 
the percentage of chimeric clones is likely to bc at 
most 50% and that the number of chimeric frag- 
ments in a clone will rarely be greater than two. 
Therefore we need to look for properties similar to 
ClP which capture this knowledge of about correct 
orderings. 

Rather than choose a single property we define 
a class of optimization functions. Matrices with opti- 
mum value of these functions have in some sense low 
chimerism. We then look in detail at two members of 
this class. One reason for choosing a class of func- 
tions rather than a single one is that any single 
function is unlikely to correlate perfectly with the true 
ordering. By having several functions we hope 
to avoid missing available information about the 
true ordering and to give greater confidence to 
information we report. 

The purpose of having an optimization function is 
to help us find probe orderings which are similar to 
the true ordering. Since actual experimental incidence 
matrices will have restricted chimeric patterns? 
we want the optimization function to favor probe 
orderings with small numbers of fragments per 
clone and small numbers of chimeric clones. Thus, 
for an experiment with n probes and m clones, we 
choose a function,f, which maps the chimeric pattern 
(an n-vectors over N, where N is the set of non- 
negative integers) to an optimization value (typical 
also in N). 

The following three restrictions on f tie the 
valuef(c(n)) to the chimerism in R. The first enforces 
that f correlate exactly in the ClP case; the opti- 
mum value for f is a non-chimeric ordering. The 
second requirement ensures that when some 
chimerism is inherent in the matrix thatfwill never 
favor a solution which has more chimerism. The 
last property ensures that the effectiveness offgrows 
with the amount of information in the incidence 
matrix. 

Optimizing f should yield a ClP ordering if a ClP 
ordering exists. 
The function f should be monotone in the 
amount of chimerism. That is, for two chimeric 
patterns or,and a,, aI < a2 NJ@,) 6f(ar). (One 
vector is < another vector if each component of the 
first is Q to the corresponding component of the 
second.) 
Adding more information to the matrix (e.g. more 
clones) should not increase the number of optimal 
solutions to J 



212 DAVID GREENBERG and !SORIN ISTRAIL 

5. I. The functions a and x 

Although there are many functions which fit 
these requirements, two functions seemed especially 
natural to us and to biologists with whom we have 
talked. We denote them as cr = the total number of 
DNA inserts, and x - the maximum number of DNA 
inserts per clone. It is possible that a more compli- 
cated function such as a linear combination of u and 
x will have even better correlation to true probe 
orders but these two functions have the advantage 
of being simple and of having provably good 
approximation algorithms. Formally we define them 
as follows: 

which the edges have vector weights. The components 
of the vectors represent different types of cost 
for traversing the edge. For example one com- 
ponent might be distance, another time, and a third 
dollar cost. Every instance of af-optimization prob- 
lem has a corresponding vTSP instance such that the 
two instances have an identical set of solutions. 
The vTSP approach creates a framework for a unified 
analysis of f-optimizations which can allow us to 
bootstrap on work which has been done on the classic 
TSP. 

Definition 4. Let A be an m x n hybridization 
matrix, x a probe order in PO(A), A” the correspond- 
ing map, and c(A’) = (a,, . . , a,,,) the chimericpattern 
of A” Define: 

In Greenberg et al. (1994) we discuss in detail the 
theoretical import of the vTSP but for this paper 
we only define it and show it in relation to 
f-optimizations. 

1. 0: N”+N, given by cr(a,, . . . , a,,,) = I?_, a,, and 
2. x: N”+N, given by x(a,, . . , a3 = max{a,, . . . , a3 

The o-value (x-value) of the map A” is given by 
o(c(A”)) (respectively, x(c(A”)). 

Having chosen an optimization function the con- 
version of the biological data to an optimization 
problem is straighforward. We can formally define 
The chimeric f-Optimization Problem as follows: 

Deiinition 5. An instance of the vector-TSP is an II 
uertex, vector-labeled, complete, undirected graph, 
G = (V, E, cost,) and a function f: N”+ N (where cost, 
is a function from edges to n-vectors over {O, 1)). 

The sparseness of a vTSP graph, s(G) = max,,, 
(the number of ones in the vector cost,(e)). The vector- 
cost of a tour in G is the component-wise sum of the 
cost of the edges in the tour. The f-cost of a tour is f 
applied to the vector<ost. 

Given: an rn x n incidence matrix A and a monotone 
function f: N”+N. 

The vTSPf-optimization problem takes as input a 
vTSP instance I = (G, f) and returns a tour in G of 
minimal f-cost. 

Find: a probe ordering I[ E PO(A) such that the f-value 
of the map A” is minimal. 

A probe ordering that is a solution of the 
f-optimization problem is called an f-solution. Both 
the o-optimization and the X-optimization problem 
are NP-complete, i.e. exact solutions are apparently 
computationally intractable (Goldberg, 1992; Kou, 
1977). Although NP-completeness means that is 
beyond the power of present computing techniques 
to find an exact g-solution or ~-solution in a reason- 
able amount of time it does not mean that u and x 
cannot be used for real genomic data. Firstly, NP- 
completeness results typically refer to arbitrary input 
matrices. However, the genomic data has specific 
properties, such as the sparseness of the hybridization 
matrices, which may reduce the problem to a class of 
instances for which efficient algorithms exist. Sec- 
ondly, once a problem is proved to be NP-complete, 
the algorithm design focus changes towards designing 
approximation algorithms. Successful techniques 
used in the design of approximation algorithms for 
other NP-complete problems turn out to provide 
powerful tools for dealing with the new NP-complete 
problems. 

The connection between optimizing u and the 
standard TSP has appeared repeatedly in the litera- 
ture (Alizadeh, 1993; Kou, 1977). In theorem 1 we 
generalize the relation to form a correspondence 
between any f-optimization of an incidence matrix 
and a vTSP problem. We are currently working on 
ways to extend the known approximation techniques 
for TSP to the more general vTSP. 

‘llworem 1. For every instance of a chimeric optim- 
ization problem there exists a vTSP instance such that 
there is a l-l correspondance between tours in the 
vTSP and probe orderings in the chimeric optimization 
problem and 

(1) an optimal solution IO one problem is also an optimal 
solution to the other. 

(2) the sparseness of the uTSP graph is at most twice the 
sparseness of the incidence matrix. 

The correspondences between incidence matrices 
and vTSP graphs and between probe orderings and 
tours is as follows and the remainder of the proof of 
the theorem is straight-forward. 

5.2. Vector-TSP optimization problems 

Given an m x n incidence matrix A let G,be the n 
vertex, vector-labeled complete undirected graph 
with cost function, cost,.(e = (i,j)) = A [i, *]@I A [j, *]. 
(Ali, *]@A[j,*] is the number of rows in which 
column i and column j of A differ in value.) 

In order to solve the d and x optimization problems The matrix A and the graph G, satisfy the follow- 
we convert them into instances of what we call ing properties, For every probe order n E PO(A) 
the vector-TSP (vTSP for short). The vTSP is there exists a tour 5, in GA such that the chimeric 
an extension of the classic Traveling Salesman pattern of the map A” and the vector-cost of r, 
Problem (Garey & Johnson, 1979) to graphs on coincide. i.e. c(A “) = cost,.(rX). Conversely, for every 
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tour T in G,, there exists a probe order 3~, E PO(A) edge of the tree so as to reduce the vector-cost of 
such that cost,.(r) = c (A *l)_ the tree. 

6. CONSTRUCTING MAPS BY APPROXIMATING x 

We are now ready to describe the first of our 
mapping algorithms. This algorithm is designed to 
minimize, x, the maximum number of fragments into 
which any clone is divided by the map. Minimizing 2 
meets our objective of matching the known structure 
of true maps since it has been observed that almost 
all chime& clones in a clone library have two inserts 
(Lander, 1992a). Furthermore, in Section 9 we show 
that, on simulated data, mimimizing x does in fact 
produce maps which are close to the true map. 
Minimizing x also meets our criteria of finding CIP 
maps when they exist, of being monotone, and of 
improving when given more information. 

The key to efficient implementations with guaran- 
teed close to optimal results is the determination of 
whether a new tree is an improvement over an old 
tree. As with the tours in Theorem I costs can be 
assigned to vector-labeled trees by taking a com- 
ponent-wise summation. Our algorithm considers 
only the logm (recal1 that m is the number of vector 
components) largest components. One tree is con- 
sidered better than another if a sorted list of its log m 
largest components is lexigraphically smaller than the 
corresponding list for the other tree. For example if 
trees T,, T,, and T, have largest components (listed 
in sorted order) equal to (5,3,,3,2), (6, I, 1, 1) and 
(4,4,4,4) then T, is an improvement over T, but not 
over T3. 

Although finding the exact minimum for x is 
difficult we describe in this section an algorithm 
which is guaranteed to find a solution with close to 
minimal 1. Randomization within the algorithm can 
produce a variety of solutions, each of which is 
guaranteed to be close to optimal. Thus a user of our 
algorithms can compare several solutions in order to 
look for consensus elements. Of course, the solutions 
found by minimizing x can also be compared with the 
solutions found by minimizing u (see Section 7). 

It is shown in Greenberg er al. (1994) that the 
above algorithm results in a tree with close to optimal 
value regardless of the initial choice of tree or the 
order in which edges are chosen for creating potential 
improvements. 

Theorem 2. For an n-vertex graph G vector-labeled 
with mdimensional vectors of sparseness s(G), the 
cycle-basis algorithm finds a spanning tree T such that 
x(T) = O(s(G)OPT + log m), where OPT i.s the opti- 
mal X-value of a spanning tree of G. 

6.1. An approximation algorithm for x 

Our algorithm for minimizing x proceeds in several 
steps. First, the matrix A is converted into a vector- 
labeled graph, G,, as in the discussion of Theorem 1 
on p. 212. Next, a spanning tree T is constructed for 
GA that has a close to optimal X-value for spanning 
trees of GA. Lastly, a tour ‘T of G,is obtained from a 
depth-first search of T. This tour t gives the probe 
order x. 

The conversion of the spanning tree found by the 
cycle-basis-algorithm into a tour make use of a 
generalization of a folklore algorithm called “twice- 
around-the-tree” (Garey & Johnson, 1979). This al- 
gorithm has been shown to allow, for scalar-labeled 
graphs which obey the triangle inequality (it is never 
cheaper to travel via an intermediate node), a tour to 
be created from a minimum spanning tree which has 
at most twice the cost of the optimal tour. Our 
generalization is given below. 

The algorithm for finding close to optimal 
spanning trees is called the cycle-basis algorithm. A 
high-level pseudo-code implementation of the algor- 
ithm is shown in Fig. 1, more details can be found in 
(Greenberg et al., 1994). The idea of the algorithm 
is to start with any spanning tree (not necessarily 
one close to optimal), and to make successive local 
improvements to the tree until no more local 
improvements can be made. The local improvements 
are made by choosing an edge of G, not in the 
tree and checking whether it can be swapped with an 

Lemma 1. Given a uector labeled graph G, a func- 
tion f, and Q spanning tree T of G. ff (I) the f-cost of 
T is less than c times the optimal f-cost of any spanning 

tree of G, (2) f is monotone and sub-additive, and (3) 
the triangle inequality is obeyed on G restricted to each 
component of the vector then the tour T created b.v 
twice-around-the-tree applied to T has f-cost at most 2c 
times the optimal f-cost of any tour of G. 

Theorem 2 and Lemma 1 together imply that using 
the cycle-basis algorithm to find a tree and converting 

Let T be any spanning tree of G = (V, E); 
until T cannot be improved 

D=E-T; 
until T is improved or checked all edges D 

Let e’ E D ; D = D - {e)‘; 
Let C = cycle(T U {e’}); e E C - {e’}; 
Let T’ = (T U {e’)) - {e}; 
if T’ has lower vector cost than T then T = T’; 

Fig. 1 
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the tree to a tour using twice-around-the-tree yields 
a provably good approximation to the optimum for 
x, (It is trivial to show the x is both monotone and 
sub-additive.) 

Theorem 3. For u n-vertex graph G vector-labeled 
with m-dimensional vectors of sparseness s(G), the 
algorithm for mimimiring x described above finds a 
tour T such that x(r) = O(s(G) * OPT + logm), where 
OPT is the optimal X-value of a tour of G. 

7. CONSTRUCTING MAPS BY APPROXIMATING (I 

Just as minimizing 1 matches the observation that 
clones from real experiments rarely consist of 
more than two fragments, the minimization of 0, the 
total number of fragments, matches the observation 
that chimerism is an error introduced on data 
which is inherently ClP and thus should be relatively 
low. 

As noted previously, the use of u as an optimiz- 
ation function for physical mapping is not new. 
We do not believe, however, that it has previously 
been applied experimentally to the chimeric clone 
problem. 

One interesting property of u is that, since it is 
defined to be the sum of the elements of the vector 
cost of a tour and the vector cost is the sum of 
components along the tour, it is possible to reduce the 
vTSP for 0 to the standard TSP. This allows us to 
apply the many ideas that have been used for solving 
TSP in the literature. In particular we have the 
following approximation guarantee based on a 
lemma of Christophedes (Garey & Johnson, 1979) 
which is an extension of the twice-around-the-tree 
lemma of the previous section. 

Theorem 4. There is a polynomial time approxi- 
mation algorithm for the o-optimization problem that 
is guaranteed to produce a tour of cost no larger than 
_: * (cost of optimal tour). 

Many researchers (Bentley & Saxe, 1980; Johnson 
& Papadimitriou, 1985; Phillips, 1989) have looked at 
practical ways of computing the optimal TSP tour. 
As a first trial we chose the simplest greedy algorithm 
(see Fig. 2 for pseudo-code). To our surprise it 
performed very well on our simulated data and we 

have not yet felt it necessary to use more complex 
approaches. The simplicity of the greedy algorithm 
has the advantage that it runs so quickly that we 
could run 100s of trials of simulated data for problem 
sizes which reflect the expected sizes of real data. 
This allowed us to attain a confidence in the results 
which would not have been possible with a slower 
algorithm. As in the algorithm for minimizing x there 
are random choices in the greedy algorithm which 
can be varied to give a set of solutions, all of which 
have close to optimal value. 

8. EXPERIMENTAL DESIGN 

Our hypothesis is that probe orders which have low 
values of u or of x will be close to the true order. 
In order to test this hypothesis we need experimental 
data in which we know the true ordering. Real 
experimental data is the ultimate test for any algor- 
ithm. However, in order to understand the ability of 
our algorithms to correct chimeric errors simulated 
data is indispensable. Simulated data, unlike real 
data, can be created so that the amount of chimerism 
is controlled. We can therefore look at cases in which 
we know the true order and we vary the amount of 
chimerism present. 

In order to produce simulated experimental data 
we created our own simple generator. The generator 
takes as input the number of STS probes (n), the 
number of clones (m), the fraction of the clones which 
are chimeric (p), and the range of clone sizes (I to u). 
The intent is to mimic an experiment in which n STS 
are used and m clones are created. Of the m clones, 
(1 - ~)m clones consist of a single fragment of DNA 
while pm clones consist of two fragments. Each clone 
hybridizes between 1 and u probes. 

These parameters allow us to vary the size of the 
experiment and the quality of the clones. We wanted 
to know whether the techniques would work equally 
well for coarse experiments in which just a few probes 
were used and for finer grained experiments in which 
many probes were used. The coverage of an exper- 
iment (the average number of clones per probe) is 
known to affect the quality of maps. Very low 
coverages tend to leave gaps in the map while high 
coverages make the experiment more costly. By vary- 

Let G be a TSP instance graph with nprobea vertices. 
Let tour be a length nprobes vector initially all -1. 

/* Start with vertex 0 */ 
current = 0: 
/* Keep adding nearest vertex to endpoint which is not already in the tour to the tour */ 
For (i = 0; i < nprobes - 1; i + +) 

nearest = vertex such that G[current,nearest] is minimal AND nearest not already in tour. 
tour[current] = nearest; ,f* add nearest to the tour */ 
current = nearest; /* and continue tour from nearest */ 

End 
Fig. 2 
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ing the number of clones in the simulated experiment 
we can determine what ranges of coverage allow good 
reconstructions. 

Since our focus is on chimerism we, of course, 
also wanted to vary the amount of chimerism. Of 
particular interest was the case of no chimerism 
(which should yield high quality results) and the case 
of 40-50% chimerism which is the expected level for 
real data. 

As the experiments progressed we realized that 
there was another important parameter, the size of 
the clones. The larger the number of probes to which 
a clone hybridizes the more information it provides 
to the algorithm. In general we assumed that the 
clones hybridized, on average, about 10% of the 
probes. In retrospect this may have been a little high 
and we plan to run additional tests with small clone 
sizes in the future. 

8. I. The simulu tor 

In our simulator we aimed for simplicity so as to 
have as good as possible an understanding of our 
input data. Simplicity necessitated some arbitrary 
decisions. In this section we describe what decisions 
we made and why we made them. 

The first decision was how to model the creation 
of clones. Since the incidence matrix only contains 
information about clone/probe hybridization and 
not information about clone length we chose to 
model a non-chimeric clone as an interval of the 
sequence 1 to n. In other words a clone is defined 
solely by which probes it hybridizes. Specifically, a 
size (s) was chosen for each clone uniformly from I 
to u and then a starting point (x) was chosen 
uniformly from 1 to (n --$ + 1). The clone was 
defined to hybridize probes x through x + s - 1. 
Since the clone’s start points and sizes were 
chosen uniformly this had the effect of modeling an 
experiment in which the probes were uniformly 
placed along the DNA. Certainly this is not the case 
in real experiments but it gave us a starting point. 
We hope to use more sophisticated probe models in 
the future. 

The second decision was how to model chimerism. 
We chose to fix the number of chimeric clones and to 
divide the size of the chimeric clone among two 
pieces. Specifically, a size (s) was chosen uniformly 
from I to u as in the non-chime& case. Then a piece 
size s, was chosen uniformly from 1 to s - 1 and s2 
was set to s -3,. A gap size (g) was then chosen 
uniformly from 1 to n - s and a start point (x) from 
1 to n - s - g + I. The chimeric clone was defined to 
hybridize probes x through x +s, - 1 and probes 
x+s,+gthroughx+s,+g+s,-1. This had the 
effect of forcing all chimeric clones to have two 
fragments and to have the same totalsize distribution 
as the non-chimeric clones. Again the reality is more 
complicated but this seemed a good first approxi- 
mation. In particular we did not want chimeric clones 
to be larger than non-chime& clones because then 

chimeric clones would contain more information than 
non-chimeric clones. 

After the generator has created the required 
number of chimeric and non-chimeric clones it has all 
the information necessary to produce a probe/clone 
incidence matrix. The order of the probes is randomly 
scrambled and the incidence matrix is produced for 
the random order. This randomly ordered matrix 
is passed to the physical mapping routines while 
the inverse of the scrambling permutation (which 
represents the true map) is passed to the routines 
which check the quality of the maps produced. 

8.2. Measures of map quality 

Since the true map is known for our simulated data 
we were able to compare the maps produced by our 
algorithms to the correct answer. It is not, however, 
obvious how to make such a comparison. If the 
algorithm returns the exact true map then all is well. 
If instead the algorithm returns some other map how 
do we measure how close it is to correct. 

We believe that innovative measures of map close- 
ness will be important to the future development of 
mapping software. In particular we will eventually 
want a map to include not only an ordering of the 
probes but some confidence measure over parts of the 
ordering. Developing good representations of a map 
plus confidence will require understanding how one 
map is close to others. However, for the current paper 
we use a simple measure of map quality-adjacent 
pair consensus. That is, the number of adjacent probe 
pairs in the true map which are identified as adjacent 
in the algorithm’s map. 

So that the best quality map always has the same 
value we actually use the number of pairs nor found 
as our cost measure. Thus a perfect solution, one 
matching the true map, has cost 0. Formally we 
define: 

Definition 6. The cost of the map s produced by 
algorithm zxf on a matrix whose true map is nIo is the 
number of pairs {i, j] such that z,&) is adjacent to no(j) 
but r(i) is not adjacent to n(j). 

9. EXPERIMENTAL RESULTS 

In Figs 3 and 4 we summarize all our simulated 
experiments. The values for cases using 20 probes 
represent the average of 100 trials, those for 40 and 
50 probes are averages of 50 trials, and those for 100 
and 200 trials are averages of 10 trials. For each case 
the first four columns give the number of probes, 
the number of clones, the number of chimeric clones, 
and the range of clone sizes (in number of probes 
hybridized). 

The next three columns represent the output of the 
greedy algorithm for reducing u described in Section 
7. They show the average u and x of the solutions 
as well as the average cost. The value of u for the 
true map is (# of clones + # of chimeric clones). 
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chimeric clone 
pTLheS ClOlVS clones size 

20 2-4 

20 
20 
20 

5 2-4 
10 2-4 
15 2-4 

20 
20 
20 
20 

0 
10 
20 
30 

2-4 
2-4 
2-4 
2-4 

20 
20 
20 
20 

0 
15 
30 
45 

2-4 
2-4 
2-4 
2-4 

40 
40 
40 
40 

0 
10 
20 
30 

4-8 
4-8 
4-g 
4-8 

40 
40 
40 
40 

0 
‘20 
40 
60 

4-8 
4-8 
4-8 
4-8 

40 
40 
40 
40 

0 4-8 
30 4-g 
60 4-8 
SO 4-8 

60 
60 
60 
60 

0 
15 
30 
45 

0 
30 
60 
90 

0 
45 
90 

3-9 
3-9 
3-9 
3-9 

60 
60 
60 
GO 

3-9 
3-9 
3-9 
3-9 

3-9 
3-9 
3-9 

greedy chimin 
;igrna chi cost sigma chi cost 

22.13 1.81 5.16 23.47 1.96 6.23 
26.81 2.28 7.17 Z&91 2.5 7.89 
31.02 2.61 8.34 32.91 2.86 9.24 
34.77 2.91 9.92 36‘19 3.04 10.35 

zii 
cost 
3.65 
5.26 
6.29 

7.76 

random 
cost 

17.03 
17.16 
17.02 
16.81 

43.53 1.74 2.35 45.3 1.76 2.73 0.95 17.00 
54.61 2.47 4.14 58.72 2.8 5.61 2.65 16.98 
65,03 2.93 5.79 67,87 3.06 6.64 3.83 16.89 
72.41 3.09 7 77.83 3.22 8.75 5.23 16.87 

63.09 1.53 1.29 66.62 la71 1.96 0.52 16.96 
80.87 2.56 2.89 86.58 2.88 4.56 1.68 17.06 
97.14 2.9 4.39 104.9 3.09 6.33 2.77 16.97 
111.8 3.13 5.77 119.6 3.32 7.64 3.79 17.15 

41.8 L48 5.84 52.98 2.18 9.18 3.16 37 
54.Q4 2.48 7.06 64.58 3.12 9.7 4.38 37.44 
67.76 3.06 8.74 76.52 3.36 11.52 5.48 37.32 
77.4 3.14 9.38 85.98 3.58 11.28 5.52 37.20 

80.3 1.14 1.1 86.96 1.46 1.8 0.46 36.84 
104.4 2-48 2.16 113.1 2.84 3.48 0.98 37.18 
127.4 2.84 2.88 137.1 3.08 4.2 1.26 37.34 
150.3 3.08 4.1 161.4 3.4 5.52 2.02 37.24 

120.3 1.14 0.44 122.3 1.1 0.38 0.14 36.68 
151.8 2.2 0.84 159.8 2.48 1.46 0.3 37.08 
184.9 2.48 1.44 198.3 2.88 2.36 0.6 37.04 
222.1 2.92 2.28 234.6 3.18 3.54 0.94 37.2 

62.96 1.76 9.52 85.1 2.52 15.2 5.78 56.76 
83,g 2.82 11.56 99.04 3.26 15.36 7.2 56.94 
100.5 3.1 13.66 117.2 3.68 18.38 9.36 57.18 
117.7 3.46 14.48 133.7 4.1 19.94 9.82 57.2 

121.9 1.24 2.36 135.6 x.9 3.8 1.1 57.06 
157.4 266 3.96 172.9 2.96 5.72 1.8 57.04 
190.9 3 3.7 213.8 3.48 7.36 1.66 56.98 
225.5 3.24 5.94 248.1 3.78 9.24 3.32 57.3 

180.5 1.18 0.8 190.5 1.42 1.34 0.32 
227.8 2.26 0.82 241.6 2.78 2.16 0.32 
282.3 2.76 2.2 302.1 3.32 4.34 0.84 
330.8 2.94 3.04 360.7 3.64 6.16 1.28 

57.08 
57.06 
57.04 
57.48 

Fig. 3 

Although the greedy algorithm does not always 
find an optimal solution, being slightly non-optimal 
apparently leads to only a small cost in quality of 
solution. The value of x is 1 for the non-chimeric 
cases and 2 for all other cases. Although the goal of 
greedy is not to minimize x it still comes close to the 
minimum in al1 cases. 

The three cohunns following those for greedy 
represent the output of the algorithm to minjmize x 
described in Section 6. Although the values of x and 
u are not, in general, as good as those for the greedy 

D minimization algorithm the x minimization aigor- 
ithm is still important. In many cases adjacency pairs 
missed by the greedy algorithm are found by the K 
minimization algorithm. Thus we have added the 
column for total cost which counts only adjacent 
pairs not found by either algorithm. In addition using 
two different algorithms yield greater confidence in 
the adjaeencies which occur in both algorithms. 
The ability to create a consensus map from several 
different algorithms is likely to be an important next 
step in the creation of mapping software, 
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chimeric clone graady ChimiIl total random 
probes clones clones size sigma chi cost sigma chi cost cost cost 

100 300 120 5-15 423.3 2.2 0.7 427.1 2.3 0.6 0.3 97.2 

200 iO0 280 10-20 980 2 0 980 2 0 0 197.3 
200 700 280 5-10 986.1 2.2 0.9 1032 3.2 4 0.5 197.3 

Fig. 4 
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From a standpoint of algorithm development the 
trend information in Fig. 3 and in the graphs of 
Figs 5,6 and 7 are especially noteworthy. The quality 
of the solution does not correlate with the number of 
probes but does correlate with the number of clones 
(i.e. coverage) and percentage of chimeric clones. 
Regardtess of the number of probes and amount of 
chime&m, Fig. 7 shows that the solutions get better 
as the coverage increases, Similarly, regardless of the 
number of probes and amount of coverage, Fig. 6 
shows that the solutions get worse as the chimerism 
increases. Thus the algorithms do capture important 
features of the biology. 

As a doubIe check that the generator was not 
responsible for these trends we also calculated the 
cost of a random permutation. {See the column 
labeled random cost in Figs 3 and 4.) The cost of the 
random permutation was always high and did not 
correlate with any of the three other parameters 
(probes, coverage and chimerism). 

The values in the table of Fig. 4 represent a few 
cases which correspond to realistic parameters for an 
actual mapping experiment. They are based on the 
data presented in (Voltrath et al., 1992; Chumakov 

et ai., 1992; Foote et ul., 1992). The number of 
probes, clones, and chime& ciones is relatively easy 
to extract from such data but the size of the clones 
is harder to predict. Clearly smaher sized clones 
wouEd yield less info~ation. 

We are not ready to say that our algorithms always 
produce perfect maps in the presence of chimeric 
clones but we do find the results encouraging. In fact, 
in the probably most realistic case (the last row of 
Fig. 4 with 200 probes, a coverage of 3.5, chimerism 
of 49% and clones which covered between 2.5% and 
5% of the probes) the greedy algorithm recovered the 
correct order in 8 out of 10 trials. On one of the two 
trials in which it did not recover the exact correct 
solution it missed on only two adjacencies. This is 
the equivalent of one piece of DNA being flipped 
in the middle of the order. In the other trial the 
greedy algorithm mised seven adjacencies. However, 
five of these adjacencies were indentifi~ by the x 
minimization algorithm. 

10. CONCLUSIONS 

The algorithmic strategies that we propose concen- 
trate on the chimerism error in insolation from other 

Probes vs. cost 

2.0 al 

Numtcr of F’mbes 

Fig, 5 
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2opmbca. covarsge 1 

20 prcbs, eovurrge 3 

60 probes, caemg~ 2 

4OPmbcs,Oavcrage2 

0 0.25 0.5 0.75 
Chimerism 

Fig. 6 

errors that occur in mapping. We noted the difficulty The search for a way to make the problem well- 
of even defining the quality of a proposed physical defined led us to look for properties of most correct 

map in the presence of errors. The goal of merely maps. Lander’s observation that chimeric maps 
finding an ordering of the probes which is consistant would have limited overall chimerism and rarely have 
with each clone being a contiguous piece of target clones containing more than two fragments opened 
DNA is no longer good enough. Since errors are the way for the investigation of optimization func- 

probabilistic any probe ordering has some likelihood tions which correlate with the structure inherent in 

of being the true order. correct probe orderings. We defined a general class of 

cowge “I. Cost 

60 pmbes. 75% chimer 4 I I 

60 pmbes 50% chimer 

20 probes 75% chimer 

60 probes, 25% chimer 

20 pmlxs. 50% chimer 

40 probes. 25% chimer 

40 probes, 0% chimer 

20 probes. 0% chimer 

Fig. 7 
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functions which should have such correlations and 
designed algorithms for two functions, u minimiz- 
ation and x minimization. We then programmed the 
two algorithms in the C programmming language to 
run on Spare workstations. We generated simulated 
experimental data which allowed us to look at trends 
in map quality as compared to experimental par- 
ameters_ Both algorithms showed excellent corre- 

lation with experimental input-they yielded higher 
quality results when there was less chimerism and 
more clone coverage. When the algorithms were 
applied to data designed to mimic real experiments 
they continued to perform well. We intend to con- 
tinue to refine the input data to make it more closely 
reflective of real data as well as to use real data as 
input in the near future. 

10.1. Directions/or future and related work 

Our work on analyzing chimerism is only just 
begun. We realize that successful analysis will 
require the incorporation of additional inform- 
ation derived from other experiments besides STS 
hybridizations. 

We also intend to extend our algorithmic approach 
to other mapping errors besides chimerism. The key 
will be to understand their corresponding combinato- 
rial nature. Eventually we will need to address 
more than one error type at once. It is our hope 
that general techniques for designing approximation 
algorithms for optimization problems will help in 
dealing with such cases. Minimizing simultaneously 
several objective functions would provide us with a 
potential framework to model multiple error occur- 
rence. A good candidate for a cIass of objective 
functions for which general approximation tech- 
niques would be helpful is given by the class M’Y of 
monotone and subadditive functions. Two such func- 
tions are u and x. We were unable to include much 
discussion of the theoretical computer science aspects 
of these problems in this paper but think they deserve 
careful consideration. The NP-completeness of the 
optimizational problems formulated for arbitrary- 
as opposed to genomic-like-clone/probe incidence 
matrices turned out to be a source of directions for 
research. Indeed, the apparent computational in- 
tractability established in (Goldberg, 1992; Kou, 

1977) refers to problems that are more general than 
the ones that occur in actual mapping. However, it is 
difficult to discover restrictive conditions that, on one 
hand will model real data, and on the other hand will 
turn out to inspire feasible algorithmic avenues. 

The theory of approximation algorithms for 

NP-complete problems includes tools for the design 

of approximate solutions to some optimization 
problems. We have extended tools developed for the 
TSP and added new tools in our effort to create 
algorithms with guaranteed performance. Another 
way in which the theory of NP-completeness was 
helpful was through the actual NP-completeness 
proofs. Understanding which parameters of the 

matrices are essential for the proofs led us to restric- 
tions that turned out to be consistent with real data. 
Moreover, the restricted version of the problems have 
fast approximation algorithms for their solution. 
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